Preventing Surgery-Induced NK Cell Dysfunction Using Anti-TGF-β Immunotherapeutics.
Marisa MarketGayashan TennakoonMarlena ScaffidiDavid P CookLeonard AngkaJuliana NgChristiano Tanese de SouzaMichael A KennedyBarbara C VanderhydenRebecca A C AuerPublished in: International journal of molecular sciences (2022)
Natural Killer (NK) cell cytotoxicity and interferon-gamma (IFNγ) production are profoundly suppressed postoperatively. This dysfunction is associated with increased morbidity and cancer recurrence. NK activity depends on the integration of activating and inhibitory signals, which may be modulated by transforming growth factor-beta (TGF-β). We hypothesized that impaired postoperative NK cell IFNγ production is due to altered signaling pathways caused by postoperative TGF-β. NK cell receptor expression, downstream phosphorylated targets, and IFNγ production were assessed using peripheral blood mononuclear cells (PBMCs) from patients undergoing cancer surgery. Healthy NK cells were incubated in the presence of healthy/baseline/postoperative day (POD) 1 plasma and in the presence/absence of a TGF-β-blocking monoclonal antibody (mAb) or the small molecule inhibitor (smi) SB525334. Single-cell RNA sequencing (scRNA-seq) was performed on PBMCs from six patients with colorectal cancer having surgery at baseline/on POD1. Intracellular IFNγ, activating receptors (CD132, CD212, NKG2D, DNAM-1), and downstream target (STAT5, STAT4, p38 MAPK, S6) phosphorylation were significantly reduced on POD1. Furthermore, this dysfunction was phenocopied in healthy NK cells through incubation with rTGF-β1 or POD1 plasma and was prevented by the addition of anti-TGF-β immunotherapeutics (anti-TGF-β mAb or TGF-βR smi). Targeted gene analysis revealed significant decreases in S6 and FKBP12, an increase in Shp-2, and a reduction in NK metabolism-associated transcripts on POD1. pSmad2/3 was increased and pS6 was reduced in response to rTGF-β1 on POD1, changes that were prevented by anti-TGF-β immunotherapeutics. Together, these results suggest that both canonical and mTOR pathways downstream of TGF-β mediate phenotypic changes that result in postoperative NK cell dysfunction.
Keyphrases
- nk cells
- transforming growth factor
- epithelial mesenchymal transition
- patients undergoing
- single cell
- monoclonal antibody
- signaling pathway
- dendritic cells
- small molecule
- minimally invasive
- immune response
- oxidative stress
- cell proliferation
- squamous cell carcinoma
- papillary thyroid
- acute coronary syndrome
- lymph node metastasis
- endothelial cells
- transcription factor
- drug induced