Intrinsic Antimicrobial Peptide Facilitates a New Broad-Spectrum Lysin LysP53 to Kill Acinetobacter baumannii In Vitro and in a Mouse Burn Infection Model.
Changchang LiMengwei JiangFazal Mehmood KhanXiaowei ZhaoGuanhua WangWanli ZhouJunhua LiJunping YuYuhong LiHongping WeiHang YangPublished in: ACS infectious diseases (2021)
Antimicrobial resistance-related infections of Gram-negative pathogens pose a huge threat to global public health. Lysins, peptidoglycan hydrolases from bacteriophages, are expected as an alternative weapon against drug-resistant bacteria. In the present study, we report a new lysin LysP53 from Acinetobacter baumannii phage 53. Bioinformatic analysis revealed that LysP53 contains a positively charged N-terminal region and a putative peptidase catalytic domain. In vitro biochemical experiments showed that LysP53 is active against multiple antibiotic-resistant Gram-negative bacteria, including A. baumannii, Pseudomonas aeruginosa, Klebsiella pneumoniae, and Escherichia coli, with a reduction of 5 logs in viable A. baumannii number after exposure to 100 μg/mL LysP53 for 1 h. Further studies showed that LysP53 contains a functional antimicrobial peptide, i.e., N-terminal 33 aa, with a comparable spectrum of activity to LysP53. In an A. baumannii-associated mouse model of burn infection, a single dose of 14 μg/mouse LysP53 (57.6 μM) showed higher decolonization efficacy than 4 μg/mouse minocycline- (874 μM; p < 0.05) and buffer-treated groups (p <0.001), leading to a bacterial reduction of 3 logs. Our findings collectively establish that LysP53 could be a promising candidate in the treatment of topical infections caused by multiple Gram-negative pathogens.
Keyphrases
- multidrug resistant
- gram negative
- acinetobacter baumannii
- drug resistant
- klebsiella pneumoniae
- pseudomonas aeruginosa
- antimicrobial resistance
- public health
- escherichia coli
- mouse model
- staphylococcus aureus
- wound healing
- combination therapy
- biofilm formation
- cystic fibrosis
- crystal structure
- candida albicans
- drug induced