Octopaminergic neurons function in appetitive but not aversive olfactory learning and memory in Bactrocera dorsalis.
Jin-Xin YuQian XiangJia-Bao QuYan-Min HuiTao LinXin-Nian ZengJia-Li LiuPublished in: Insect science (2022)
The biogenic amine octopamine (OA, invertebrate counterpart of noradrenaline) plays critical roles in the regulation of olfactory behavior. Historically, OA has been thought to mediate appetitive but not aversive learning in honeybees, fruit flies (Drosophila), and crickets. However, this viewpoint has recently been challenged because OA activity through a β-adrenergic-like receptor drives both appetitive and aversive learning. Here, we explored the roles of OA neurons in olfactory learning and memory retrieval in Bactrocera dorsalis. We trained flies to associate an orange odor with a sucrose reward or to associate methyl eugenol, a male lure, with N,N-diethyl-3-methyl benzoyl amide (DEET) punishment. We then treated flies with OA receptor antagonists before appetitive or aversive conditioning and a memory retention test. Injection of OA receptor antagonist mianserin or epinastine into the abdomen of flies led to impaired of appetitive learning and memory retention with a sucrose reward, while aversive learning and memory retention with DEET punishment remained intact. Our results suggest that the OA signaling participates in appetitive but not aversive learning and memory retrieval in B. dorsalis through OA receptors.