Login / Signup

Alchemical Free Energy and Hamiltonian Replica Exchange Molecular Dynamics to Compute Hydrofluorocarbon Isotherms in Imidazolium-Based Ionic Liquids.

Ning WangRyan S DeFeverEdward J Maginn
Published in: Journal of chemical theory and computation (2023)
Ionic liquids (ILs) have shown promise for applications that leverage differential gas solubility in an IL solvent, e.g., gas separations. Although most available literature provides Henry's law constants, the ability to efficiently estimate full isotherms is important for engineering design calculations. Molecular simulation can be used as a tool to predict full isotherms of gas in ILs. However, particle insertions or deletions in a charge-dense IL medium and the sluggish conformational dynamics of ILs present two sampling challenges for these systems. We therefore devised a method that uses Hamiltonian replica exchange (HREX) molecular dynamics (MD) combined with alchemical free energy calculations to compute full solubility isotherms of two different hydrofluorocarbons (HFCs) in imidazolium-based IL binary mixtures. This workflow is significantly faster than the Gibbs ensemble Monte Carlo (GEMC) simulations which fail to deal with the slow conformational relaxation caused by the sluggish dynamics of ILs. Multiple free energy estimators, including thermodynamic integration, free energy perturbation, and multistate Bennett acceptance ratio method, provided consistent results. Overall, the simulated Henry's law constant, isotherm curvature, and solubility trends match experimental results reasonably well. We close by calculating the full solubility isotherms of two HFCs in IL mixtures that have not been reported in the literature, demonstrating the potential of this method to be used for solubility prediction and setting the stage for future computational screening studies that search for the "best" IL to separate azeotropic HFC mixtures.
Keyphrases