An efficient and effective method to identify significantly perturbed subnetworks in cancer.
Le YangRunpu ChenSteve GoodisonYijun SunPublished in: Nature computational science (2021)
The identification of key functional biological networks from high-dimensional genomics data is pivotal for cancer research. Here, we introduce FDRnet, a method for the detection of molecular subnetworks in cancer, which addresses several challenges in pathway analysis. FDRnet detects key subnetworks by solving a mixed-integer linear programming problem, using a given upper bound of false discovery rate (FDR) as a budget constraint, and minimizing a conductance score to find dense subgraphs around seed genes. A large-scale benchmark study was performed on both simulation and cancer genomics data. FDRnet outperformed other methods in the ability to detect functionally homogeneous subnetworks in a scale-free biological network, to control FDRs of the genes in detected subnetworks, to improve computational efficiency and to integrate multi-omics data. By overcoming the limitations of existing approaches, FDRnet can facilitate the detection of key functional pathways in cancer and other genetic diseases.