Login / Signup

Acute reduction of lower-body contractile function following a microbiopsy of m. vastus lateralis.

Robert W DaviesBrian P CarsonJoseph J BassSorcha HolohanPhilip M Jakeman
Published in: Scandinavian journal of medicine & science in sports (2018)
Twenty-three resistance trained men 18-35 years (23 [3] years, 1.8 [0.1] m, 81 [10] kg body mass, 2.3 [1.1] years resistance training experience; mean [SD]) performed repeated maximal voluntary isometric squats (ISQ) and countermovement jumps (CMJ) pre- and +30 minutes post a unilateral microbiopsy of m. vastus lateralis. ISQ and CMJ were simultaneously measured by two force plates sampling ipsilateral (biopsied) and contralateral (non-biopsied) limb force. Bilateral limb force (ipsilateral + contralateral) and imbalance (ipsilateral/bilateral) data are reported as % change from pre-biopsy (mean [95% CI]). A post-biopsy reduction in bilateral ISQ peak force (-17 [-23, -11] %; P < 0.001), ISQ rate of force development (RFD; -28 [-41, -15] %, P = 0.002) and CMJ peak take-off force (-7 [-13, -1]%, P = 0.019) occurred. Imbalance was observed for ISQ peak force (3.2 [2.1, 4.3] %, P < 0.001), RFD (2.8 [1.6, 4.0] %, P < 0.001) and CMJ landing (3.3 [1.0, 5.6] %, P = 0.009), resultant of a force transfer from the ipsilateral (biopsied) to the contralateral (non-biopsied) limb. These data suggest that in young, resistance trained men a modulatory influence on maximal voluntary static and dynamic lower-body contractile function is evoked acutely (+30 minutes) following a microbiopsy of m. vastus lateralis.
Keyphrases
  • resistance training
  • single molecule
  • body composition
  • case report
  • heart rate
  • middle aged
  • machine learning
  • intensive care unit
  • artificial intelligence
  • deep learning
  • fine needle aspiration
  • smooth muscle