Quorum-Sensing Master Regulator VfmE Is a c-di-GMP Effector That Controls Pectate Lyase Production in the Phytopathogen Dickeya dadantii.
Biswarup BanerjeeQuan ZengManda YuBrian Y HsuehChristopher M WatersChing-Hong YangPublished in: Microbiology spectrum (2022)
Dickeya dadantii is a phytopathogenic bacterium that causes diseases on a wide range of host plants. The pathogen secretes pectate lyases (Pel) through the type II secretion system (T2SS) that degrades the cell wall in host plants. The virulence of D. dadantii is controlled by the second messenger cyclic diguanylate monophosphate (c-di-GMP), and the homeostasis of c-di-GMP is maintained by a number of diguanylate cyclases and phosphodiesterases. Deletion of a phosphodiesterase ecpC repressed pelD transcription, and such repression can be suppressed by an additional deletion in vfmE . VfmE is an AraC type of transcriptional regulator in the Vfm quorum-sensing system. Our results suggest that VfmE is a c-di-GMP effector that functions as an activator of pel at low c-di-GMP concentrations and a repressor of pel at high c-di-GMP concentrations through regulation of the transcriptional activator SlyA. Multiple sequence alignment with known c-di-GMP effectors identified an RWIWR motif in VfmE that we demonstrate is required for the c-di-GMP binding. Mutation of R93D in the RxxxR motif eliminates the c-di-GMP-related phenotypes in Pel activity. Our results show that VfmE is not only a quorum-sensing regulator but also a c-di-GMP effector, suggesting that D. dadantii integrates the c-di-GMP signaling network with the Vfm quorum-sensing pathway during environmental adaptation. IMPORTANCE How bacteria integrate environmental cues from multiple sources to appropriately regulate adaptive phenotypes is a central question in microbiology. In Dickeya dadantii, the quorum-sensing regulator VfmE controls the key virulence factor pectate lyase (Pel). Here, we demonstrate that VfmE also binds to c-di-GMP, resulting in VfmE functioning as an activator of pel at low c-di-GMP concentrations and repressor of pel at high c-di-GMP concentrations. The RWIWR motif in VfmE is required for c-di-GMP binding, and mutation of the motif in the mutant R93D eliminates the c-di-GMP-related phenotypes in Pel activity. We propose that VfmE is an important mediator to integrate quorum-sensing signals with c-di-GMP to collectively regulate D. dadantii pathogenesis.