Molecular characterization of fructose-1,6-bisphosphatase 1b in blunt snout bream Megalobrama amblycephala and the transcriptional response to glucose loading after the adaptation to high-carbohydrate diets.
Xiang-Fei LiChao XuGuang-Zhen JiangDing-Dong ZhangWen-Bin LiuPublished in: Fish physiology and biochemistry (2017)
This study aimed to characterize the full-length complementary DNA (cDNA) of fructose-1,6-bisphosphatase 1b (FBP1b) from fish Megalobrama amblycephala, and investigate its transcriptional response to glucose administration after the adaptation to high-carbohydrate diets. The cDNA obtained covered 1435 bp with an open reading frame of 1014 bp. Sequence alignment and phylogenetic analysis revealed a high degree of conservation (76-96%) among most fish and other vertebrates, retaining one N-linked glycosylation site, one N-terminal acetylation site, 13 phosphorylation sites, one fructose-1,6-bisphosphatase (FBPase) active site, five metal-binding sites, four substrate-binding sites, and several AMP-binding sites. The highest messenger RNA (mRNA) level of FBP1b was observed in liver followed by intestine, whereas relatively low values were detected in heart, gill, and eye. Then, the mRNA levels of FBP1b and the FBPase activity were both determined in the liver of fish injected intraperitoneally with 1.67 g glucose per kilogram body weight after being fed two dietary carbohydrate levels (30 and 42%) for 11 weeks. After the glucose load, the mRNA levels of FBP1b in both treatments decreased significantly to the basal value at 8 h and showed a slight increase afterward. However, the enzymatic activity showed no statistical difference during the first 4 h, but increased remarkably with further increasing times. In addition, both the mRNA levels and activities decreased significantly with increasing dietary carbohydrate levels. The results indicated that the FBP1b of M. amblycephala shared a high similarity with that of the other vertebrates. Its mRNA expression in liver was downregulated remarkably by a glucose administration, as also held true after the long-term adaptation of a carbohydrate-rich diet.