Login / Signup

Twin boundary defect engineering improves lithium-ion diffusion for fast-charging spinel cathode materials.

Rui WangXin ChenZhongyuan HuangJinlong YangFusheng LiuMihai ChuTongchao LiuChaoqi WangWeiming ZhuShuankui LiShunning LiJiaxin ZhengJie ChenLunhua HeLei JinFeng PanYinguo Xiao
Published in: Nature communications (2021)
Defect engineering on electrode materials is considered an effective approach to improve the electrochemical performance of batteries since the presence of a variety of defects with different dimensions may promote ion diffusion and provide extra storage sites. However, manipulating defects and obtaining an in-depth understanding of their role in electrode materials remain challenging. Here, we deliberately introduce a considerable number of twin boundaries into spinel cathodes by adjusting the synthesis conditions. Through high-resolution scanning transmission electron microscopy and neutron diffraction, the detailed structures of the twin boundary defects are clarified, and the formation of twin boundary defects is attributed to agminated lithium atoms occupying the Mn sites around the twin boundary. In combination with electrochemical experiments and first-principles calculations, we demonstrate that the presence of twin boundaries in the spinel cathode enables fast lithium-ion diffusion, leading to excellent fast charging performance, namely, 75% and 58% capacity retention at 5 C and 10 C, respectively. These findings demonstrate a simple and effective approach for fabricating fast-charging cathodes through the use of defect engineering.
Keyphrases
  • electron microscopy
  • high resolution
  • solid state
  • ion batteries
  • gold nanoparticles
  • molecular dynamics
  • molecularly imprinted
  • reduced graphene oxide
  • mass spectrometry
  • solar cells
  • high speed