DNA methylome analysis provides insights into gene regulatory mechanism for better performance of rice under fluctuating environmental conditions: epigenomics of adaptive plasticity.
Suresh KumarKarishma SeemSantosh KumarArchana SinghS Gopala KrishnanTrilochan MohapatraPublished in: Planta (2023)
Roots play an important role in adaptive plasticity of rice under dry/direct-sown conditions. However, hypomethylation of genes in leaves (resulting in up-regulated expression) complements the adaptive plasticity of Nagina-22 under DSR conditions. Rice is generally cultivated by transplanting which requires plenty of water for irrigation. Such a practice makes rice cultivation a challenging task under global climate change and reducing water availability. However, dry-seeded/direct-sown rice (DSR) has emerged as a resource-saving alternative to transplanted rice (TPR). Though some of the well-adapted local cultivars are used for DSR, only limited success has been achieved in developing DSR varieties mainly because of a limited knowledge of adaptability of rice under fluctuating environmental conditions. Based on better morpho-physiological and agronomic performance of Nagina-22 (N-22) under DSR conditions, N-22 and IR-64 were grown by transplanting and direct-sowing and used for whole genome methylome analysis to unravel the epigenetic basis of adaptive plasticity of rice. Comparative methylome and transcriptome analyses indicated a large number (4078) of genes regulated through DNA methylation/demethylation in N-22 under DSR conditions. Gene × environment interactions play important roles in adaptive plasticity of rice under direct-sown conditions. While genes for pectinesterase, LRK10, C2H2 zinc-finger protein, splicing factor, transposable elements, and some of the unannotated proteins were hypermethylated, the genes for regulation of transcription, protein phosphorylation, etc. were hypomethylated in CG context in the root of N-22, which played important roles in providing adaptive plasticity to N-22 under DSR conditions. Hypomethylation leading to up-regulation of gene expression in the leaf complements the adaptive plasticity of N-22 under DSR conditions. Moreover, differential post-translational modification of proteins and chromatin assembly/disassembly through DNA methylation in CHG context modulate adaptive plasticity of N-22. These findings would help developing DSR cultivars for increased water-productivity and ecological efficiency.