Login / Signup

Antibunching-like behavior of mesoscopic light.

Alessia AlleviMaria Bondani
Published in: Scientific reports (2017)
We present the implementation of a compact setup for the generation of sub-Poissonian states of light exhibiting the analogous of antibunching behavior in the so-called mesoscopic intensity domain. In the scheme, the idler arm of a pulsed multi-mode twin-beam state is directly measured by a photon-number-resolving detector, whereas the signal arm is divided at a balanced beam splitter, at whose outputs other two photon-number-resolving detectors measure the number of photons. The three detectors measure synchronous with each laser pulse. Due to the nonclassical correlations in the twin beam, when a given value of photons is measured in the idler arm, the conditional states obtained in post processing at the two beam-splitter outputs are nonclassical, showing lower-than-one values of the Fano factor and of the photon autocorrelation coefficient. The possibility to engineer sub-Poissonian states nearly approaching the Fock state with one photon is also addressed.
Keyphrases
  • monte carlo
  • living cells
  • healthcare
  • blood pressure
  • electron microscopy
  • computed tomography
  • high resolution
  • mass spectrometry
  • high speed