Rational Design of Multi-Color-Emissive Carbon Dots in a Single Reaction System by Hydrothermal.
Boyang WangJingkun YuLaizhi SuiShoujun ZhuZhiyong TangBai YangSiyu LuPublished in: Advanced science (Weinheim, Baden-Wurttemberg, Germany) (2020)
As an emerging building unit, carbon dots (CDs) have been igniting the revolutionaries in the fields of optoelectronics, biomedicine, and bioimaging. However, the difficulty of synthesizing CDs in aqueous solution with full-spectrum emission severely hinders further investigation of their emission mechanism and their extensive applications in white light emitting diodes (LEDs). Here, the full-color-emission CDs with a unique structure consisting of sp 3-hybridized carbon cores with small domains of partially sp 2-hybridized carbon atoms are reported. First-principle calculations are initially used to predict that the transformation from sp 3 to sp 2 hybridization redshifts the emission of CDs. Guided by the theoretical predictions, a simple, convenient, and controllable route to hydrothermally prepare CDs in a single reaction system is developed. The prepared CDs have full-spectrum emission with an unprecedented two-photon emission across the whole visible color range. These full-color-emission CDs can be further nurtured by slight modifications of the reaction conditions (e.g., temperature, pH) to generate the emission color from blue to red. Finally a flexible LEDs with full-color emission by using epoxy CDs films is developed, indicating that the strategy affords an industry translational potential over traditional fluorophores.