Electronic and optical properties of pristine, N- and S-doped water-covered TiO2 nanotube surfaces.
Stéphane KenmoeO LisovskiS PiskunovY F ZhukovskiiEckhard SpohrPublished in: The Journal of chemical physics (2019)
For rational design and improvement of electronic and optical properties of water-splitting photocatalysts, the ability to control the band edge positions relative to the water redox potentials and the photoresponse as a function of environmental conditions is essential. We combine ab initio molecular dynamics simulations with ab initio many-body theoretical calculations to predict the bandgap and band edge energies, as well as the absorption spectrum of pristine and N- and S-doped TiO2 nanotubes using the DFT+U and G0W0 approaches. Both levels of theory show similar trends, and N+S-codoping appears to be the optimal system for photocatalytic water splitting both in dry and humid conditions. However, the effect is rather moderate. Compared to DFT+U, the enhanced many-body effects in the G0W0 calculations push the absolute energies of the band edges to higher values and yield increased quasi-particle bandgaps in better agreement with experiment. In dry and humid conditions, the electronic bandgap for all systems is found to be in the range of 6.0-6.2 eV with a redshift from electronic gap to optical gap. The absorption spectra show an optical anisotropy and different absorption thresholds for different light polarizations.
Keyphrases