In-vivo assessment of a rat rectal tumor using optical-resolution photoacoustic endoscopy.
Riqiang LinShengmiao LvWenjing LouXiatian WangZhihua XieSilue ZengRui ChenWen GaoTianan JiangKa-Wai Eric ChengKwok-Ho LamXiaojing GongPublished in: Biomedical optics express (2024)
Optical-resolution photoacoustic endoscopy (OR-PAE) has been proven to realize imaging on the vascular network in the gastrointestinal (GI) tract with high sensitivity and spatial resolution, providing morphological information. Various photoacoustic endoscopic catheters were developed to improve the resolution and adaptivity of in-vivo imaging. However, this technology has not yet been validated on in-vivo GI tumors, which generally feature angiogenesis. The tumor causes thickened mucosa and neoplasia, requiring large depth-of-field (DOF) in imaging, which contradicts to high-resolution imaging. In this work, a novel catheter was developed with a high resolution of ∼27 µm, providing a matched DOF of ∼400 µm to cover the vessels up to the submucosa layer. Optical-resolution photoacoustic endoscopic imaging was first performed on in-vivo rat rectal tumors. In addition, to further characterize the vessel morphology, tumor-suspected regions and normal regions were selected for quantification and analysis of vessel dimension distribution and tortuosity. All the results suggest that the OR-PAE has great application potential in tumor diagnosis, evaluation, and monitoring of therapeutic efficacy.