Login / Signup

Confinement Assembly of ABC Triblock Terpolymers for the High-Yield Synthesis of Janus Nanorings.

Andrea SteinhausRamzi ChakrounMarkus MüllnerTai-Lam NghiemMarcus HildebrandtAndre H Gröschel
Published in: ACS nano (2019)
Block copolymers are versatile building blocks for the self-assembly of functional nanostructures in bulk and solution. While spheres, cylinders, and bilayer sheets are thermodynamically preferred shapes and frequently observed, ring-shaped nanoparticles are more challenging to realize due to energetic penalties that originate from their anisotropic curvature. Today, a handful of concepts exist that produce core-shell nanorings, while more complex ( e. g., patchy) nanorings are currently out of reach and have only been predicted theoretically. Here, we demonstrate that confinement assembly of properly designed ABC triblock terpolymers is a general route to synthesize Janus nanorings in high purity. The triblock terpolymer self-assembles in the spherical confinement of nanoemulsion droplets into prolate ellipsoidal microparticles with an axially stacked lamellar-ring ( lr)-morphology. We clarified and visualized this complex, yet well-ordered, morphology with transmission electron tomography. Blocks A and C formed stacks of lamellae with the B microdomain sandwiched in-between as nanorings. Cross-linking of the B-rings allowed disassembly of the microparticles into Janus nanorings carrying two strictly separated polymer brushes of A and C on the top and bottom. Decreasing the B volume leads to Janus spheres and rods, while an increase of B results in perforated and filled Janus disks. The confinement assembly of ABC triblock terpolymers is a general process that can be extended to other block chemistries and will allow to synthesize a large variety of complex micro- and nanoparticles that inspire studies in self-assembly, interfacial stabilization, colloidal packing, and nanomedicine.
Keyphrases
  • molecular dynamics simulations
  • cancer therapy
  • walled carbon nanotubes