Login / Signup

2D Mechanical Metamaterials with Widely Tunable Unusual Modes of Thermal Expansion.

Xiaoyue NiXiaogang GuoJiahong LiYonggang HuangYihui ZhangJohn A Rogers
Published in: Advanced materials (Deerfield Beach, Fla.) (2019)
Most natural materials expand uniformly in all directions upon heating. Artificial, engineered systems offer opportunities to tune thermal expansion properties in interesting ways. Previous reports exploit diverse design principles and fabrication techniques to achieve a negative or ultralow coefficient of thermal expansion, but very few demonstrate tunability over different behaviors. This work presents a collection of 2D material structures that exploit bimaterial serpentine lattices with micrometer feature sizes as the basis of a mechanical metamaterials system capable of supporting positive/negative, isotropic/anisotropic, and homogeneous/heterogeneous thermal expansion properties, with additional features in unusual shearing, bending, and gradient modes of thermal expansion. Control over the thermal expansion tensor achieved in this way provides a continuum-mechanics platform for advanced strain-field engineering, including examples of 2D metamaterials that transform into 3D surfaces upon heating. Integrated electrical and optical sources of thermal actuation provide capabilities for reversible shape reconfiguration with response times of less than 1 s, as the basis of dynamically responsive metamaterials.
Keyphrases
  • high resolution
  • magnetic resonance imaging
  • escherichia coli
  • cystic fibrosis
  • high throughput
  • drug delivery
  • staphylococcus aureus
  • deep learning
  • quantum dots
  • biofilm formation
  • drug induced
  • finite element