The quantification of changes in the trabecular bone structure induced by musculoskeletal diseases like osteoarthritis, osteoporosis, rheumatoid arthritis, and others by means of a texture analysis is a valuable tool which is expected to improve the diagnosis and monitoring of a disease. The reaction of texture parameters on different alterations in the architecture of the fine trabecular network and inherent imaging factors such as spatial resolution or image noise has to be understood in detail to ensure an accurate and reliable determination of the current bone state. Therefore, a digital model for the quantitative analysis of cancellous bone structures was developed. Five parameters were used for texture analysis: entropy, global and local inhomogeneity, local anisotropy, and variogram slope. Various generic structural changes of cancellous bone were simulated for different spatial resolutions. Additionally, the dependence of the texture parameters on tissue mineralization and noise was investigated. The present work explains changes in texture parameter outcomes based on structural changes originating from structure modifications and reveals that a texture analysis could provide useful information for a trabecular bone analysis even at resolutions below the dimensions of single trabeculae.
Keyphrases
- bone mineral density
- contrast enhanced
- rheumatoid arthritis
- postmenopausal women
- soft tissue
- bone loss
- high resolution
- bone regeneration
- body composition
- healthcare
- magnetic resonance imaging
- computed tomography
- type diabetes
- metabolic syndrome
- machine learning
- ankylosing spondylitis
- pet ct
- deep learning
- positron emission tomography
- adipose tissue
- social media
- systemic sclerosis
- skeletal muscle