Genome-wide evidence for divergent selection between populations of a major agricultural pathogen.
Fanny E HartmannBruce Alan McDonaldDaniel CrollPublished in: Molecular ecology (2018)
The genetic and environmental homogeneity in agricultural ecosystems is thought to impose strong and uniform selection pressures. However, the impact of this selection on plant pathogen genomes remains largely unknown. We aimed to identify the proportion of the genome and the specific gene functions under positive selection in populations of the fungal wheat pathogen Zymoseptoria tritici. First, we performed genome scans in four field populations that were sampled from different continents and on distinct wheat cultivars to test which genomic regions are under recent selection. Based on extended haplotype homozygosity and composite likelihood ratio tests, we identified 384 and 81 selective sweeps affecting 4% and 0.5% of the 35 Mb core genome, respectively. We found differences both in the number and the position of selective sweeps across the genome between populations. Using a XtX-based outlier detection approach, we identified 51 extremely divergent genomic regions between the allopatric populations, suggesting that divergent selection led to locally adapted pathogen populations. We performed an outlier detection analysis between two sympatric populations infecting two different wheat cultivars to identify evidence for host-driven selection. Selective sweep regions harboured genes that are likely to play a role in successfully establishing host infections. We also identified secondary metabolite gene clusters and an enrichment in genes encoding transporter and protein localization functions. The latter gene functions mediate responses to environmental stress, including interactions with the host. The distinct gene functions under selection indicate that both local host genotypes and abiotic factors contributed to local adaptation.
Keyphrases
- genome wide
- copy number
- dna methylation
- genome wide identification
- candida albicans
- climate change
- computed tomography
- magnetic resonance imaging
- human health
- heavy metals
- gene expression
- small molecule
- transcription factor
- sensitive detection
- resting state
- genome wide analysis
- loop mediated isothermal amplification