Distance-Dependence Study of Plasmon Resonance Energy Transfer with DNA Spacers.
Jun MaMing Xuan GaoHua ZuoYuan-Fang LiPeng Fei GaoCheng Zhi HuangPublished in: Analytical chemistry (2020)
Plasmon resonance energy transfer (PRET) in hybrid plasmonic-molecular systems has a broad range of applications from catalysis to analytical/biochemical/biophysical imaging and sensing. Herein, we experimentally and theoretically probed the influence of the distance (d) between the plasmonic nanoparticle and the conjugated molecules on the PRET efficiency (ηPRET) using two PRET systems, which involved tetramethylrhodamine (TAMRA) or Cy3 molecules as acceptors and single spherical gold nanoparticles (AuNPs) as donors. The double-stranded DNA (dsDNA) sequences precisely adjusted within 12.0 nm were utilized as a donor-acceptor spacer. Then, the ηPRET of the two systems under varied d-values was available from the reduction of the scattering intensity of AuNPs. Both experimental and quasi-static approximation data show that ηPRET displays a d-value-dependent decay function. This study would provide new insights into optimal PRET-based chemical/biochemical sensors.