Login / Signup

Impact of dianionic and dicationic linkers on tumor uptake and biodistribution of [64 Cu]Cu/NOTA peptide-based gastrin-releasing peptide receptors antagonists.

Nematallah MansourVéronique Dumulon-PerreaultSamia Ait-MohandMichel PaquetteRoger LecomteBrigitte Guérin
Published in: Journal of labelled compounds & radiopharmaceuticals (2017)
In this study, we investigated for the first time the influence of 2-aminoethyl-piperazine-1-carboxylic acid (APCA) and amino-hexanedioic-1-acid (AHDA) on tumor uptake and elimination kinetics of [64 Cu]-radiolabeled gastrin releasing peptide receptors (GRPR) antagonists. Three GRPR antagonists containing the RM26 sequence were synthesized and conjugated with NOTA via different linkers (LK): polyethylene glycol (PEG-neutral), APCA (dicationic) or AHDA (dianionic). The NOTA-LK-RM26 peptides were radiolabeled with 64 Cu to assess their pharmacokinetic and positron emission tomography (PET) imaging properties using PC3 tumor-bearing athymic nude mice. The inhibition constants (Ki ) of the 3 nat Cu/NOTA-LK-RM26 peptides bearing PEG, dicationic and dianionic linkers were 0.98 ± 0.48 nM, 0.95 ± 0.21 nM, and 17.97 ± 2.79 nM, respectively. The [64 Cu] NOTA-LK-RM26 conjugates were prepared with labeling yields superior to 95% and specific activities of 67 to 77 TBq/mmol. The 3 radiopeptides were stable in vivo and showed GRPR-specific uptake in pancreas with a very fast washout of this tissue observed for [64 Cu]-NOTA-AHDA-RM26 peptide. Results from imaging studies displayed specific PC3 tumor uptake for both [64 Cu]-NOTA-APCA- and AHDA-RM26, similar kidney elimination and fast liver washout. Considering their adequate imaging characteristics, [64 Cu]-NOTA-LK-RM26 bearing APCA- and AHDA-linkers are promising candidates for GRPR-targeted PET imaging prostate cancer.
Keyphrases