Login / Signup

Mechanical Properties of MiniBars™ Basalt Fiber-Reinforced Geopolymer Composites.

Gabriel FurtosDoina ProdanCodruţa Liana SaroşiMărioara MoldovanKinga KorniejenkoLeonard MillerLukáš FialaNováková Iveta
Published in: Materials (Basel, Switzerland) (2024)
Fly ash-based geopolymers represent a new material, which can be considered an alternative to ordinary Portland cement. MiniBars™ are basalt fiber composites, and they were used to reinforce the geopolymer matrix for the creation of unidirectional MiniBars™ reinforced geopolymer composites (MiniBars™ FRBCs). New materials were obtained by incorporating variable amount of MiniBars™ (0, 12.5, 25, 50, 75 vol.% MiniBars™) in the geopolymer matrix. Geopolymers were prepared by mixing fly ash powder with Na 2 SiO 3 and NaOH as alkaline activators. MiniBars™ FRBCs were cured at 70 °C for 48 h and tested for different mechanical properties. Optical microscopy and SEM were employed to investigate the fillers and MiniBars™ FRBC. MiniBars™ FRBC showed increasing mechanical properties by an increased addition of MiniBars™. The mechanical properties of MiniBars™ FRBC increased more than the geopolymer wtihout MiniBars™: the flexural strength > 11.59-25.97 times, the flexural modulus > 3.33-5.92 times, the tensile strength > 3.50-8.03 times, the tensile modulus > 1.12-1.30 times, and the force load at upper yield tensile strength > 4.18-7.27 times. SEM and optical microscopy analyses were performed on the fractured surface and section of MiniBars™ FRBC and confirmed a good geopolymer network around MiniBars™. Based on our results, MiniBars™ FRBC could be a very promising green material for buildings.
Keyphrases
  • high resolution
  • high speed
  • single molecule
  • reduced graphene oxide
  • optical coherence tomography
  • municipal solid waste
  • aqueous solution
  • label free
  • hyaluronic acid