Login / Signup

Phase-Inversion Induced 3D Electrode for Direct Acidic Electroreduction CO 2 to Formic acid.

Tao YanHui PanZhikun LiuPeng Kang
Published in: Small (Weinheim an der Bergstrasse, Germany) (2023)
Direct electrochemical CO 2 reduction to formic acid (FA) instead of formate is a challenging task due to the high acidity of FA and competitive hydrogen evolution reaction. Herein, 3D porous electrode (TDPE) is prepared by a simple phase inversion method, which can electrochemically reduce CO 2 to FA in acidic conditions. Owing to interconnected channels, high porosity, and appropriate wettability, TDPE not only improves mass transport, but also realizes pH gradient to build higher local pH micro-environment under acidic conditions for CO 2 reduction compared with planar electrode and gas diffusion electrode. Kinetic isotopic effect experiments demonstrate that the proton transfer becomes the rate-determining step at the pH of 1.8; however, not significant in neutral solution, suggesting that the proton is aiding the overall kinetics. Maximum FA Faradaic efficiency of 89.2% has been reached at pH 2.7 in a flow cell, generating FA concentration of 0.1 m. Integrating catalyst and gas-liquid partition layer into a single electrode structure by phase inversion method paves a facile avenue for direct production of FA by electrochemical CO 2 reduction.
Keyphrases