Login / Signup

A unified approach for topology optimization with local stress constraints considering various failure criteria: von Mises, Drucker-Prager, Tresca, Mohr-Coulomb, Bresler- Pister and Willam-Warnke.

Oliver Giraldo-LondoñoGlaucio H Paulino
Published in: Proceedings. Mathematical, physical, and engineering sciences (2020)
An interesting, yet challenging problem in topology optimization consists of finding the lightest structure that is able to withstand a given set of applied loads without experiencing local material failure. Most studies consider material failure via the von Mises criterion, which is designed for ductile materials. To extend the range of applications to structures made of a variety of different materials, we introduce a unified yield function that is able to represent several classical failure criteria including von Mises, Drucker-Prager, Tresca, Mohr-Coulomb, Bresler-Pister and Willam-Warnke, and use it to solve topology optimization problems with local stress constraints. The unified yield function not only represents the classical criteria, but also provides a smooth representation of the Tresca and the Mohr-Coulomb criteria-an attribute that is desired when using gradient-based optimization algorithms. The present framework has been built so that it can be extended to failure criteria other than the ones addressed in this investigation. We present numerical examples to illustrate how the unified yield function can be used to obtain different designs, under prescribed loading or design-dependent loading (e.g. self-weight), depending on the chosen failure criterion.
Keyphrases
  • machine learning
  • physical activity
  • high resolution
  • weight loss
  • mass spectrometry
  • heat stress
  • neural network