Supramolecular Annihilator with DPA Parallelly Arranged by Multiple Hydrogen-Bonding Interactions for Enhanced Triplet-Triplet Annihilation Upconversion.
Qiuhui HeLingling WeiCheng HeCheng YangWuanhua WuPublished in: Molecules (Basel, Switzerland) (2024)
The triplet annihilator is a critical component for triplet-triplet annihilation upconversion (TTA-UC); both the photophysical properties of the annihilator and the intermolecular orientation have pivotal effects on the overall efficiency of TTA-UC. Herein, we synthesized two supramolecular annihilators A-1 and A-2 by grafting 9,10-diphenylanthracene (DPA) fragments, which have been widely used as triplet annihilators for TTA-UC, on a macrocyclic host-pillar[5]arenes. In A-1 , the orientation of the two DPA units was random, while, in A-2 , the two DPA units were pushed to a parallel arrangement by intramolecular hydrogen-bonding interactions. The two compounds showed very similar photophysical properties and host-guest binding affinities toward electron-deficient guests, but showed totally different TTA-UC emissions. The UC quantum yield of A-2 could be optimized to 13.7% when an alkyl ammonia chain-attaching sensitizer S-2 was used, while, for A-1 , only 5.1% was achieved. Destroying the hydrogen-bonding interactions by adding MeOH to A-2 significantly decreased the UC emissions, demonstrating that the parallel orientations of the two DPA units contributed greatly to the TTA-UC emissions. These results should be beneficial for annihilator designs and provide a new promising strategy for enhancing TTA-UC emissions.