Login / Signup

Endogenous Lifecycle Models for Chemical Risk Assessment.

Matthew A EttersonGerald T Ankley
Published in: Environmental science & technology (2021)
Despite over 50 years of research on the use of population models in chemical risk assessment, their practical utility has remained elusive. A novel application and interpretation of ecotoxicological models, Endogenous Lifecycle Models (ELM), is proposed that offers some of the benefits sought from population models, at much lower cost of design, parametrization, and verification. ELMs capture the endogenous lifecycle processes of growth, development, survival, and reproduction and integrate these to estimate and predict expected fitness. Two measures of fitness are proposed as natural model predictions in the context of chemical risk assessment, lifetime reproductive success, and the expected annual propagation of genetic descendants, including self (intrinsic fitness). Six characteristics of the ELM approach are reviewed and illustrated with two ELM examples, the first for a general passerine lifecycle and the second for bald eagle (Haliaeetus leucocephalus). Throughout, the focus is on development of robust qualitative model predictions that depend as little as possible on specific parameter values. Thus, ELMs sacrifice precision to optimize generality in understanding the effects of chemicals across the diversity of avian lifecycles. Notably, the ELM approach integrates naturally with the adverse outcome pathway framework; this integration can be employed as a midtier risk assessment tool when lower tier analyses suggest potential risk.
Keyphrases
  • risk assessment
  • human health
  • physical activity
  • body composition
  • heavy metals
  • systematic review
  • dna methylation
  • gene expression
  • genome wide
  • free survival
  • adverse drug