Login / Signup

Relationship between Composition and Environmental Degradation of Poly(isosorbide- co -diol oxalate) (PISOX) Copolyesters.

Yue WangKevin van der MaasDaniel H WeinlandDio TrijnesRobert-Jan van PuttenAlbert TietemaJohn R ParsonsEva de RijkeGert-Jan M Gruter
Published in: Environmental science & technology (2024)
To reduce the global CO 2 footprint of plastics, bio- and CO 2 -based feedstock are considered the most important design features for plastics. Oxalic acid from CO 2 and isosorbide from biomass are interesting rigid building blocks for high T g polyesters. The biodegradability of a family of novel fully renewable (bio- and CO 2 -based) poly(isosorbide- co -diol) oxalate (PISOX-diol) copolyesters was studied. We systematically investigated the effects of the composition on biodegradation at ambient temperature in soil for PISOX (co)polyesters. Results show that the lag phase of PISOX (co)polyester biodegradation varies from 0 to 7 weeks. All (co)polyesters undergo over 80% mineralization within 180 days (faster than the cellulose reference) except one composition with the cyclic codiol 1,4-cyclohexanedimethanol (CHDM). Their relatively fast degradability is independent of the type of noncyclic codiol and results from facile nonenzymatic hydrolysis of oxalate ester bonds (especially oxalate isosorbide bonds), which mostly hydrolyzed completely within 180 days. On the other hand, partially replacing oxalate with terephthalate units enhances the polymer's resistance to hydrolysis and its biodegradability in soil. Our study demonstrates the potential for tuning PISOX copolyester structures to design biodegradable plastics with improved thermal, mechanical, and barrier properties.
Keyphrases
  • anaerobic digestion
  • air pollution
  • high resolution
  • particulate matter
  • human health
  • mass spectrometry
  • quantum dots
  • plant growth
  • gold nanoparticles
  • silver nanoparticles