Information measures and design issues in the study of mortality deceleration: findings for the gamma-Gompertz model.
Marie BöhnstedtJutta GampeHein PutterPublished in: Lifetime data analysis (2021)
Mortality deceleration, or the slowing down of death rates at old ages, has been repeatedly investigated, but empirical studies of this phenomenon have produced mixed results. The scarcity of observations at the oldest ages complicates the statistical assessment of mortality deceleration, even in the parsimonious parametric framework of the gamma-Gompertz model considered here. The need for thorough verification of the ages at death can further limit the available data. As logistical constraints may only allow to validate survivors beyond a certain (high) age, samples may be restricted to a certain age range. If we can quantify the effects of the sample size and the age range on the assessment of mortality deceleration, we can make recommendations for study design. For that purpose, we propose applying the concept of the Fisher information and ideas from the theory of optimal design. We compute the Fisher information matrix in the gamma-Gompertz model, and derive information measures for comparing the performance of different study designs. We then discuss interpretations of these measures. The special case in which the frailty variance takes the value of zero and lies on the boundary of the parameter space is given particular attention. The changes in information related to varying sample sizes or age ranges are investigated for specific scenarios. The Fisher information also allows us to study the power of a likelihood ratio test to detect mortality deceleration depending on the study design. We illustrate these methods with a study of mortality among late nineteenth-century French-Canadian birth cohorts.