Flexible Lead-Free X-ray Detector from Metal-Organic Frameworks.
Zheng LiShuquan ChangHaiqian ZhangYong HuYulong HuangLu AuShenqiang RenPublished in: Nano letters (2021)
Semiconductive metal-organic frameworks (MOFs) obtained by specific host-guest interactions have attracted a large interest in the last two decades, promising development of next-generation electronic devices. Herein, we designed and presented flexible X-ray detectors using Ni-DABDT (DABDT = 2,5-diamino-1,4-benzenedithiol dihydrochloride) MOFs as the absorbing layer. The π-d coupling interactions of Ni-DABDT throughout the framework implement a conspicuous carrier transportation pathway. The detector that converts X-ray photons directly into carriers manifests an attractive achievement with high detection sensitivity of 98.6 μC Gyair-1 cm-2, with a low detection limit of 7.2 μGyair s-1 for the radiation robustness. This work provides insights for next-generation green and high-performance flexible sensor detectors by utilizing MOF materials with the benefits of a designable structure and tunable property, demonstrating a proof-of-concept in wearable X-ray detectors for radiation monitoring and imaging.
Keyphrases