Login / Signup

Deterministic placement of ultra-bright near-infrared color centers in arrays of silicon carbide micropillars.

Stefania CastellettoAbdul Salam Al AtemFaraz Ahmed InamHans Jürgen von BardelebenSophie HameauAhmed Fahad AlmutairiGérard GuillotShin-Ichiro SatoAlberto BorettiJean Marie Bluet
Published in: Beilstein journal of nanotechnology (2019)
We report the enhancement of the optical emission between 850 and 1400 nm of an ensemble of silicon mono-vacancies (VSi), silicon and carbon divacancies (VCVSi), and nitrogen vacancies (NCVSi) in an n-type 4H-SiC array of micropillars. The micropillars have a length of ca. 4.5 μm and a diameter of ca. 740 nm, and were implanted with H+ ions to produce an ensemble of color centers at a depth of approximately 2 μm. The samples were in part annealed at different temperatures (750 and 900 °C) to selectively produce distinct color centers. For all these color centers we saw an enhancement of the photostable fluorescence emission of at least a factor of 6 using micro-photoluminescence systems. Using custom confocal microscopy setups, we characterized the emission of VSi measuring an enhancement by up to a factor of 20, and of NCVSi with an enhancement up to a factor of 7. The experimental results are supported by finite element method simulations. Our study provides the pathway for device design and fabrication with an integrated ultra-bright ensemble of VSi and NCVSi for in vivo imaging and sensing in the infrared.
Keyphrases
  • high resolution
  • finite element
  • convolutional neural network
  • neural network
  • high throughput
  • single molecule
  • energy transfer
  • protein kinase
  • high density
  • optic nerve
  • deep learning
  • fluorescence imaging
  • monte carlo