Login / Signup

Mechanical coordination is sufficient to promote tissue replacement during metamorphosis in Drosophila.

Carla Prat-RojoPhilippe-Alexandre PouilleJavier BucetaEnrique Martín-Blanco
Published in: The EMBO journal (2019)
During development, cells coordinate to organize in coherent structures. Although it is now well established that physical forces are essential for implementing this coordination, the instructive roles of mechanical inputs are not clear. Here, we show that the replacement of the larval epithelia by the adult one in Drosophila demands the coordinated exchange of mechanical signals between two cell types, the histoblasts (adult precursors) organized in nests and the surrounding larval epidermal cells (LECs). An increasing stress gradient develops from the center of the nests toward the LECs as a result of the forces generated by histoblasts as they proliferate and by the LECs as they delaminate (push/pull coordination). This asymmetric radial coordination of expansive and contractile activities contributes to epithelial replacement. Our analyses support a model in which cell-cell mechanical communication is sufficient for the rearrangements that implement epithelial morphogenesis.
Keyphrases