Login / Signup

Comparison of methods for the NMR measurement of motionally averaged dipolar couplings.

Scott A SouthernFrédéric A Perras
Published in: Journal of magnetic resonance (San Diego, Calif. : 1997) (2024)
Motionally averaged dipolar couplings are an important tool for understanding the complex dynamics of catalysts, polymers, and biomolecules. While there is a plethora of solid-state NMR pulse sequences available for their measurement, in can be difficult to gauge the methods' strengths and weaknesses. In particular, there has not been a comprehensive comparison of their performance in natural abundance samples, where 1 H homonuclear dipolar couplings are important and the use of large MAS rotors may be required for sensitivity reasons. In this work, we directly compared some of the more common methods for measuring C-H dipolar couplings in natural abundance samples using L-alanine (L-Ala) and the N-formyl-L-methionyl-L-leucyl-L-phenylalanine (fMLF) tripeptide as model systems. We evaluated their performance in terms of accuracy, resolution, sensitivity, and ease of implementation. We found that, despite the presence of 1 H homonuclear dipolar interactions, all methods, with the exception of REDOR, were able to yield the reasonable dipolar coupling strengths for both mobile and static moieties. Of these methods, PDLF provides the most convenient workflow and precision at the expense of low sensitivity. In low-sensitivity cases, MAS-PISEMA and DIPSHIFT appear to be the better options.
Keyphrases
  • solid state
  • magnetic resonance
  • healthcare
  • primary care
  • room temperature
  • mass spectrometry
  • quality improvement
  • anaerobic digestion