Distance-dependent distribution thresholding in probabilistic tractography.
Ya-Ning ChangAjay D HalaiMatthew A Lambon RalphPublished in: Human brain mapping (2023)
Tractography is widely used in human studies of connectivity with respect to every brain region, function, and is explored developmentally, in adulthood, ageing, and in disease. However, the core issue of how to systematically threshold, taking into account the inherent differences in connectivity values for different track lengths, and to do this in a comparable way across studies has not been solved. By utilising 54 healthy individuals' diffusion-weighted image data taken from HCP, this study adopted Monte Carlo derived distance-dependent distributions (DDDs) to generate distance-dependent thresholds with various levels of alpha for connections of varying lengths. As a test case, we applied the DDD approach to generate a language connectome. The resulting connectome showed both short- and long-distance structural connectivity in the close and distant regions as expected for the dorsal and ventral language pathways, consistent with the literature. The finding demonstrates that the DDD approach is feasible to generate data-driven DDDs for common thresholding and can be used for both individual and group thresholding. Critically, it offers a standard method that can be applied to various probabilistic tracking datasets.
Keyphrases
- resting state
- white matter
- functional connectivity
- monte carlo
- diffusion weighted
- spinal cord
- multiple sclerosis
- autism spectrum disorder
- systematic review
- contrast enhanced
- depressive symptoms
- endothelial cells
- spinal cord injury
- magnetic resonance imaging
- lymph node
- electronic health record
- neuropathic pain
- deep learning
- magnetic resonance
- computed tomography
- brain injury
- data analysis