Ethane-Based Catalytic Process for Vinyl Chloride Manufacture.
Guido ZichittellaJavier Perez-RamirezPublished in: Angewandte Chemie (International ed. in English) (2021)
The use of ethane as a platform molecule for the manufacture of polyvinyl chloride (PVC) is a longstanding challenge, which would allow to reduce the raw material costs and CO2 emissions to produce this plastic. Herein, we discover that rare earth oxychlorides catalyze in a selective (up to 90 %) and stable (>50 h on stream) manner the reaction of ethane and molecular chlorine into 1,2-dichloroethane, which, upon established cracking, will translate into an order of magnitude higher vinyl chloride productivity compared to ethane oxychlorination technologies. In addition, representative europium oxychloride was supported on suitable carriers and was demonstrated to be selective (up to 90 %) and stable (>40 h on stream) in extrudate form. These findings bring the ethane-based production of PVC one step closer to implementation.