Colour Stability of Two Commercially Available Maxillofacial Prosthetic Elastomers after Outdoor Weathering in Al Jouf Province.
Mahmoud Gamal SalloumKiran Kumar GanjiAli Mohammed AldajaniShital SonunePublished in: Materials (Basel, Switzerland) (2023)
Facial prostheses are created from special elastomers modified for their specific physical and mechanical properties; however, they also show two common major clinical problems: gradual discolouration of the prosthesis over time in service environment and deterioration of static, dynamic, and physical properties. As a result of external environmental factors, facial prostheses may become discoloured and discolour by changing colour from intrinsic and extrinsic colouring, and this is associated with the intrinsic colour stability of elastomers and colourants. Thus, in this in vitro study, a comparative evaluation of the effect of outdoor weathering on the colour stability of A-103 and A-2000 room-temperature vulcanised silicones used for maxillofacial prosthesis was conducted. To accomplish this study, a total of 80 samples were fabricated, 40 samples of each material were grouped as clear (20) and pigmented (20). These samples were mounted on wooden board and the assembly was placed on the roof of the dental school from October 2021 to March 2022. To maximise the amount of sunlight on the specimens, the exposure rack was set on five 68° angles from horizontal and also to prevent standing water. The specimens were left uncovered during exposure. The testing of samples was conducted with the help of a spectrophotometer. The colour values were recorded in the CIELAB colour system. It describes the three colour coordinates (colour values) x, y, and z in three new reference values of L, a, and b, aiding in numerically classifying colour differences. After 2, 4, and 6 months of weathering, testing was conducted using a spectrophotometer and the colour change (ΔE) was calculated. The A-103 RTV silicone group with pigmentation showed the maximum change in colour after six months of environmental conditioning. The data for colour difference within groups were analysed using a one-way ANOVA test. Tukey's post hoc test assessed the pairwise mean comparison's contribution to the overall significant difference. The nonpigmented A-2000 RTV silicone group showed the maximum change in colour after six months of environmental conditioning. After 2, 4, and 6 months of environmental conditioning, pigmented A-2000 RTV silicone showed better colour stability than A-103 RTV silicone. The patients requiring facial prosthesis do need to work on outdoor fields, and thus weathering will have deleterious effects on such prosthesis. Hence, the selection of appropriate silicone material with respect to the Al Jouf province region is crucial, which includes economic, durable, and colour stability.