Machine Learning Approach Based on a Range-Corrected Deep Potential Model for Efficient Vibrational Frequency Computation.
Jitai YangYang CongYou LiHui LiPublished in: Journal of chemical theory and computation (2023)
As an ensemble average result, vibrational spectrum simulation can be time-consuming with high accuracy methods. We present a machine learning approach based on the range-corrected deep potential (DPRc) model to improve the computing efficiency. The DPRc method divides the system into "probe region" and "solvent region"; "solvent-solvent" interactions are not counted in the neural network. We applied the approach to two systems: formic acid C═O stretching and MeCN C≡N stretching vibrational frequency shifts in water. All data sets were prepared using the quantum vibration perturbation approach. Effects of different region divisions, one-body correction, cut range, and training data size were tested. The model with a single-molecule "probe region" showed stable accuracy; it ran roughly 10 times faster than regular deep potential and reduced the training time by about four. The approach is efficient, easy to apply, and extendable to calculating various spectra.