Login / Signup

The shape of chromatin: insights from computational recognition of geometric patterns in Hi-C data.

Andrea RaffoJonas Paulsen
Published in: Briefings in bioinformatics (2023)
The three-dimensional organization of chromatin plays a crucial role in gene regulation and cellular processes like deoxyribonucleic acid (DNA) transcription, replication and repair. Hi-C and related techniques provide detailed views of spatial proximities within the nucleus. However, data analysis is challenging partially due to a lack of well-defined, underpinning mathematical frameworks. Recently, recognizing and analyzing geometric patterns in Hi-C data has emerged as a powerful approach. This review provides a summary of algorithms for automatic recognition and analysis of geometric patterns in Hi-C data and their correspondence with chromatin structure. We classify existing algorithms on the basis of the data representation and pattern recognition paradigm they make use of. Finally, we outline some of the challenges ahead and promising future directions.
Keyphrases
  • data analysis
  • electronic health record
  • machine learning
  • transcription factor
  • gene expression
  • big data
  • dna damage
  • deep learning
  • genome wide
  • circulating tumor
  • single molecule
  • cell free