Contrast optimization of mass spectrometry imaging (MSI) data visualization by threshold intensity quantization (TrIQ).
Ignacio Rosas-RománRobert WinklerPublished in: PeerJ. Computer science (2021)
Mass spectrometry imaging (MSI) enables the unbiased characterization of surfaces with respect to their chemical composition. In biological MSI, zones with differential mass profiles hint towards localized physiological processes, such as the tissue-specific accumulation of secondary metabolites, or diseases, such as cancer. Thus, the efficient discovery of 'regions of interest' (ROI) is of utmost importance in MSI. However, often the discovery of ROIs is hampered by high background noise and artifact signals. Especially in ambient ionization MSI, unmasking biologically relevant information from crude data sets is challenging. Therefore, we implemented a Threshold Intensity Quantization (TrIQ) algorithm for augmenting the contrast in MSI data visualizations. The simple algorithm reduces the impact of extreme values ('outliers') and rescales the dynamic range of mass signals. We provide an R script for post-processing MSI data in the imzML community format (https://bitbucket.org/lababi/msi.r) and implemented the TrIQ in our open-source imaging software RmsiGUI (https://bitbucket.org/lababi/rmsigui/). Applying these programs to different biological MSI data sets demonstrated the universal applicability of TrIQ for improving the contrast in the MSI data visualization. We show that TrIQ improves a subsequent detection of ROIs by sectioning. In addition, the adjustment of the dynamic signal intensity range makes MSI data sets comparable.
Keyphrases
- electronic health record
- mass spectrometry
- high resolution
- big data
- small molecule
- machine learning
- deep learning
- high intensity
- computed tomography
- ms ms
- escherichia coli
- liquid chromatography
- mental health
- magnetic resonance imaging
- gas chromatography
- climate change
- high throughput
- contrast enhanced
- candida albicans
- pseudomonas aeruginosa
- particulate matter
- staphylococcus aureus
- biofilm formation
- simultaneous determination
- childhood cancer
- sensitive detection
- capillary electrophoresis