Harnessing Bioluminescent Bacteria to Develop an Enzymatic-free Enzyme-linked immunosorbent assay for the Detection of Clinically Relevant Biomarkers.
Liming HuMarianna RossettiJosé Francisco BerguaClaudio ParoloRuslán R Alvarez-DidukLourdes RivasAndrea IdiliArben MerkoçiPublished in: ACS applied materials & interfaces (2024)
Enzyme-linked immunosorbent assay (ELISA) is the gold standard technique for measuring protein biomarkers due to its high sensitivity, specificity, and throughput. Despite its success, continuous advancements in ELISA and immunoassay formats are crucial to meet evolving global challenges and to address new analytical needs in diverse applications. To expand the capabilities and applications of immunoassays, we introduce a novel ELISA-like assay that we call Bioluminescent-bacteria-linked immunosorbent assay (BBLISA). BBLISA is an enzyme-free assay that utilizes the inner filter effect between the bioluminescent bacteria Allivibrio fischeri and metallic nanoparticles (gold nanoparticles and gold iridium oxide nanoflowers) as molecular absorbers. Functionalizing these nanoparticles with antibodies induces their accumulation in wells upon binding to molecular targets, forming the classical immune-sandwich complex. Thanks to their ability to adsorb the light emitted by the bacteria, the nanoparticles can suppress the bioluminescence signal, allowing the rapid quantification of the target. To demonstrate the bioanalytical properties of the novel immunoassay platform, as a proof of principle, we detected two clinically relevant biomarkers (human immunoglobulin G and SARS-CoV-2 nucleoprotein) in human serum, achieving the same sensitivity and precision as the classic ELISA. We believe that BBLISA can be a promising alternative to the standard ELISA techniques, offering potential advancements in biomarker detection and analysis by combining nanomaterials with a low-cost, portable bioluminescent platform.
Keyphrases
- high throughput
- low cost
- gold nanoparticles
- sars cov
- loop mediated isothermal amplification
- monoclonal antibody
- label free
- endothelial cells
- sensitive detection
- single cell
- hydrogen peroxide
- nitric oxide
- machine learning
- big data
- single molecule
- silver nanoparticles
- small molecule
- protein protein
- coronavirus disease
- risk assessment
- walled carbon nanotubes
- reduced graphene oxide