Biocompatibility and Physiological Thiolytic Degradability of Radically Made Thioester-Functional Copolymers: Opportunities for Drug Release.
Nathaniel M BinghamQamar Un NisaPriyanka GuptaNeil P YoungEirini VelliouPeter J RothPublished in: Biomacromolecules (2022)
Being nondegradable, vinyl polymers have limited biomedical applicability. Unfortunately, backbone esters incorporated through conventional radical ring-opening methods do not undergo appreciable abiotic hydrolysis under physiologically relevant conditions. Here, PEG acrylate and di(ethylene glycol) acrylamide-based copolymers containing backbone thioesters were prepared through the radical ring-opening copolymerization of the thionolactone dibenzo[c,e]oxepin-5(7 H )-thione. The thioesters degraded fully in the presence of 10 mM cysteine at pH 7.4, with the mechanism presumed to involve an irreversible S-N switch. Degradations with N -acetylcysteine and glutathione were reversible through the thiol-thioester exchange polycondensation of R-SC(═O)-polymer-SH fragments with full degradation relying on an increased thiolate/thioester ratio. Treatment with 10 mM glutathione at pH 7.2 (mimicking intracellular conditions) triggered an insoluble-soluble switch of a temperature-responsive copolymer at 37 °C and the release of encapsulated Nile Red (as a drug model) from core-degradable diblock copolymer micelles. Copolymers and their cysteinolytic degradation products were found to be noncytotoxic, making thioester backbone-functional polymers promising for drug delivery applications.