Login / Signup

Underpotential lithium plating on graphite anodes caused by temperature heterogeneity.

Hansen WangYangying ZhuSang Cheol KimAllen PeiYanbin LiDavid T BoyleHongxia WangZewen ZhangYusheng YeWilliam HuangYayuan LiuJinwei XuJun LiFang LiuYi Cui
Published in: Proceedings of the National Academy of Sciences of the United States of America (2020)
Rechargeability and operational safety of commercial lithium (Li)-ion batteries demand further improvement. Plating of metallic Li on graphite anodes is a critical reason for Li-ion battery capacity decay and short circuit. It is generally believed that Li plating is caused by the slow kinetics of graphite intercalation, but in this paper, we demonstrate that thermodynamics also serves a crucial role. We show that a nonuniform temperature distribution within the battery can make local plating of Li above 0 V vs. Li0/Li+ (room temperature) thermodynamically favorable. This phenomenon is caused by temperature-dependent shifts of the equilibrium potential of Li0/Li+ Supported by simulation results, we confirm the likelihood of this failure mechanism during commercial Li-ion battery operation, including both slow and fast charging conditions. This work furthers the understanding of nonuniform Li plating and will inspire future studies to prolong the cycling lifetime of Li-ion batteries.
Keyphrases
  • ion batteries
  • solid state
  • room temperature
  • risk assessment
  • climate change
  • single cell
  • human health
  • current status