Login / Signup

A Roadmap to Low-Cost Hydrogen with Hydroxide Exchange Membrane Electrolyzers.

Reza AbbasiBrian P SetzlerSaisai LinJunhua WangYun ZhaoHui XuBryan PivovarBoyuan TianXi ChenGang WuYushan Yan
Published in: Advanced materials (Deerfield Beach, Fla.) (2019)
Hydrogen is an ideal alternative energy carrier to generate power for all of society's energy demands including grid, industrial, and transportation sectors. Among the hydrogen production methods, water electrolysis is a promising method because of its zero greenhouse gas emission and its compatibility with all types of electricity sources. Alkaline electrolyzers (AELs) and proton exchange membrane electrolyzers (PEMELs) are currently used to produce hydrogen. AELs are commercially mature and are used in a variety of industrial applications, while PEMELs are still being developed and find limited application. In comparison with AELs, PEMELs have more compact structure and can achieve higher current densities. Recently, however, an alternative technology to PEMELs, hydroxide exchange membrane electrolyzers (HEMELs), has gained considerable attention due to the possibility to use platinum group metal (PGM)-free electrocatalysts and cheaper membranes, ionomers, and construction materials and its potential to achieve performance parity with PEMELs. Here, the state-of-the-art AELs and PEMELs along with the current status of HEMELs are discussed in terms of their positive and negative aspects. Additionally discussed are electrocatalyst, membrane, and ionomer development needs for HEMELs and benchmark electrocatalysts in terms of the cost-performance tradeoff.
Keyphrases
  • low cost
  • current status
  • wastewater treatment
  • heavy metals
  • working memory
  • risk assessment
  • reduced graphene oxide
  • high density
  • transition metal