Login / Signup

Biodegradable Multifunctional Bioactive Glass-Based Nanocomposite Elastomers with Controlled Biomineralization Activity, Real-Time Bioimaging Tracking, and Decreased Inflammatory Response.

Yannan LiYi GuoWen NiuMi ChenYumeng XueJuan GePeter X MaBo Lei
Published in: ACS applied materials & interfaces (2018)
Controlled biomineralization activity of biomaterials is rather important in bone regeneration and osseointegration avoiding the formation of fibrous capsule. However, most of conventional biodegradable elastomeric biomaterials for bone regeneration do not possess biomineralization ability and inherent multifunctional properties. Herein, we report a multifunctional bioactive glass (BG)-based hybrid poly(citrate-siloxane) (PCS) elastomer with intrinsical biomineralization activity and photoluminescent properties for potential bone tissue regeneration. Monodispersed BG nanoparticles (BGNs) were used to control the elastomeric behavior, biomineralization activity, photoluminescent ability, and osteogenic cellular response of PCS elastomers. BGNs significantly enhanced the elastomeric modulus of PCS from 20 to 200 MPa (10 times improvement) and the hydrophilicity (from 82° to 28° in water contact angle). The photoluminescent properties of PCS elastomers were also tailored through the incorporation of BGNs. The in vivo degradation of PCS-BGN nanocomposites could be efficiently tracked through noninvasively monitoring their fluorescent change. PCS-BGN nanocomposites enhanced the proliferation and osteoblastic differentiation of osteoblasts (MC3T3-E1) and decreased the in vivo inflammatory response. This study provided a novel tactics for designing the bioactive elastomeric biomaterials with multifunctional properties for bone regeneration medicine.
Keyphrases