Login / Signup

Wave Packet Calculation of Absolute UV Cross Section of Criegee Intermediates.

Kaito Takahashi
Published in: The journal of physical chemistry. A (2022)
Criegee intermediates, R 1 R 2 COO, are reactive species formed in the atmosphere through the ozonolysis of alkenes. They have an intense ultraviolet (UV) adsorption between 300 to 400 nm. However, experimentally determining the absolute cross sections is not easy. We used wave packet propagation on an one-dimensional adiabatic potential energy curve (PEC) along the OO bond to simulate the UV spectra for various Criegee intermediates. Our results showed a very fast, ∼20 fs, decay out of the Franck-Condon region. This gives justification for using the semiclassical approach which was utilized in previous studies. From the comparison of various quantum chemistry methods, we found that multireference methods can give spectra with a width and cross section reproducing the experimental results, while single reference methods tend to give narrower skewed peaks with a larger cross section. From the test using wave packet propagation on various approximated PECs and transition moment functions, we show that the Gaussian approximation within the reflection method is valid. In addition, we found that we can obtain peak positions that reproduce the experimental results by shifting those obtained by MRCI+Q, CASSCF, EOMCCSD, and TDCAMB3LYP by -0.2, -1.0, -0.3, and -0.5 eV, respectively. The Gaussian approximation using peak position, oscillator strength, and peak width from MRCI+Q is a cost-effective way to simulate the UV spectra of Crigee intermediates for which experimental determination may be hard.
Keyphrases
  • aqueous solution
  • density functional theory
  • molecular dynamics
  • photodynamic therapy
  • mass spectrometry
  • human health
  • case control
  • drug discovery
  • simultaneous determination