Login / Signup

Dynamics of PHA-Accumulating Bacterial Communities Fed with Lipid-Rich Liquid Effluents from Fish-Canning Industries.

David Correa-GaleoteLucia ArgizAngeles Val Del RioAnuska Mosquera CorralBelen Juarez-JimenezJesus Gonzalez-LopezBelen Rodelas
Published in: Polymers (2022)
The biosynthesis of polyhydroxyalkanoates (PHAs) from industrial wastes by mixed microbial cultures (MMCs) enriched in PHA-accumulating bacteria is a promising technology to replace petroleum-based plastics. However, the populations' dynamics in the PHA-accumulating MMCs are not well known. Therefore, the main objective of this study was to address the shifts in the size and structure of the bacterial communities in two lab-scale sequencing batch reactors (SBRs) fed with fish-canning effluents and operated under non-saline (SBR-N, 0.5 g NaCl/L) or saline (SBR-S, 10 g NaCl/L) conditions, by using a combination of quantitative PCR and Illumina sequencing of bacterial 16S rRNA genes. A double growth limitation (DGL) strategy, in which nitrogen availability was limited and uncoupled to carbon addition, strongly modulated the relative abundances of the PHA-accumulating bacteria, leading to an increase in the accumulation of PHAs, independently of the saline conditions (average 9.04 wt% and 11.69 wt%, maximum yields 22.03 wt% and 26.33% SBR-N and SBR-S, respectively). On the other hand, no correlations were found among the PHAs accumulation yields and the absolute abundances of total Bacteria , which decreased through time in the SBR-N and did not present statistical differences in the SBR-S. Acinetobacter , Calothrix , Dyella , Flavobacterium , Novosphingobium , Qipengyuania , and Tsukamurella were key PHA-accumulating genera in both SBRs under the DGL strategy, which was revealed as a successful tool to obtain a PHA-enriched MMC using fish-canning effluents.
Keyphrases
  • wastewater treatment
  • single cell
  • anaerobic digestion
  • microbial community
  • heavy metals
  • high resolution
  • genome wide
  • drug resistant
  • risk assessment
  • dna methylation
  • sewage sludge