Login / Signup

Nanolignin-Facilitated Robust Hydrogels.

Xiaofeng PanXiang LiZhongkai WangYonghao NiQinhua Wang
Published in: ACS nano (2024)
Recently, certain challenges and accompanying drawbacks have emerged in the preparation of high-strength and tough polymer hydrogels. Insights from wood science highlight the role of the intertwined molecular structure of lignin and crystalline cellulose in contributing to wood's strength. Herein, we immersed prestretched poly(vinyl alcohol) (PVA) polymer hydrogels into a solution of nanosized lignosulfonate sodium (LS), a water-soluble anionic polyelectrolyte, to creatively reconstruct this similar structure at the molecular scale in hydrogels. The nanosized LS effectively fixed and bundled the prestretched PVA polymers while inducing the formation of dense crystalline domains within the polymer matrix. Consequently, the interwoven structure of crystalline PVA and LS conferred good strength to the composite hydrogels, exhibiting a tensile strength of up to ∼23 MPa, a fracture strain of ∼350%, Young's modulus of ∼17 MPa, toughness of ∼47 MJ/m 3 , and fracture energy of ∼42 kJ/m 2 . This hydrogel far outperformed previous hydrogels composed directly of lignin and PVA (tensile strength <1.5 MPa). Additionally, the composite hydrogels demonstrated excellent antifreezing properties (<-80 °C). Notably, the LS-assisted reconstruction technology offers opportunities for the secondary fixation of PVA hydrogel shapes and high-strength welding of hydrogel components. This work introduces an approach for the high-value utilization of LS, a green byproduct of pulp production. LS's profound biomimetic strategy will be applied in multifunctional hydrogel fields.
Keyphrases
  • drug delivery
  • hyaluronic acid
  • tissue engineering
  • wound healing
  • drug release
  • cancer therapy
  • extracellular matrix
  • water soluble
  • public health
  • room temperature
  • autism spectrum disorder
  • hip fracture