Login / Signup

Case Study: Atypical δ13 C values of urinary norandrosterone.

Frank HuelsemannVassilios GougoulidisThomas SchertelGregor FusshöllerUlrich FlenkerThomas PiperMario Thevis
Published in: Drug testing and analysis (2018)
Isotope ratio mass spectrometry (IRMS) has been established in doping control analysis to identify the endogenous or exogenous origin of a variety of steroidal analytes including the 19-norsteroid metabolite norandrosterone (NorA). NorA can be found naturally in human urine in trace amounts due to endogenous demethylation or in situ microbial degradation. The administration of nortestosterone (nandrolone) or different prohormones results in the excretion of urinary NorA. Usually, this can be detected by IRMS due to differing δ13 C values of synthetic 19-norsteroids compared to endogenous reference compounds. The consumption of uncastrated pig edible parts like offal or even meat may also lead to a urinary excretion of NorA. In order to determine the δ13 C values of such a scenario, urine samples collected after consumption of a wild-boar-testicle meal were analyzed. IRMS revealed highly enriched δ13 C values for urinary NorA, which could be related to the completely corn-based nutrition of the animal. Isotopic analysis of the boar's bristles demonstrated a dietary change from C3 -based forage, probably in winter and spring, to a C4 -based diet in the last weeks to months prior to death. These results supported the interpretation of an atypical test result of a Central European athlete's doping control sample with δ13 C values for NorA of -18 ‰, most probably caused by the consumption of a wild boar ragout. As stated before, athletes should be fully aware of the risk that consumption of wild boar may result in atypical or even adverse analytical findings in sports drug testing.
Keyphrases
  • mass spectrometry
  • physical activity
  • endothelial cells
  • liquid chromatography
  • high resolution
  • gas chromatography
  • single cell
  • adverse drug
  • preterm birth