Login / Signup

Predicting and Recognizing Drug-Induced Type I Brugada Pattern Using ECG-Based Deep Learning.

Paul-Adrian CălbureanLuigi PannoneCinzia MonacoDomenico Giovanni Della RoccaAntonio SorgenteAlexandre AlmoradGezim BalaFilippo AgliettiRobbert RamakIngrid OvereinderErwin StrökerGudrun PappaertMarius Măru'teriMarius HarpaMark La MeirPedro BrugadaJuan SieiraAndrea SarkozyGian-Battista ChierchiaCarlos De Asmundis
Published in: Journal of the American Heart Association (2024)
BrS-Net, a deep convolutional neural network, can identify BrS type I pattern with high performance. BrS-Net can predict from baseline ECG the development of a BrS type I pattern after ajmaline with good performance in an unselected population.
Keyphrases
  • convolutional neural network
  • deep learning
  • drug induced
  • liver injury
  • heart rate variability
  • heart rate
  • artificial intelligence
  • machine learning
  • blood pressure
  • adverse drug