Login / Signup

Vacancy-Engineered Nanoceria: Enzyme Mimetic Hotspots for the Degradation of Nerve Agents.

Amit A VernekarTandrila DasGovindasamy Mugesh
Published in: Angewandte Chemie (International ed. in English) (2015)
Organophosphorus-based nerve agents, such as paraoxon, parathion, and malathion, inhibit acetylcholinesterase, which results in paralysis, respiratory failure, and death. Bacteria are known to use the enzyme phosphotriesterase (PTE) to break down these compounds. In this work, we designed vacancy-engineered nanoceria (VE CeO2 NPs) as PTE mimetic hotspots for the rapid degradation of nerve agents. We observed that the hydrolytic effect of the nanomaterial is due to the synergistic activity between both Ce(3+) and Ce(4+) ions located in the active site-like hotspots. Furthermore, the catalysis by nanoceria overcomes the product inhibition generally observed for PTE and small molecule-based PTE mimetics.
Keyphrases
  • small molecule
  • respiratory failure
  • peripheral nerve
  • extracorporeal membrane oxygenation
  • mechanical ventilation
  • quantum dots
  • protein protein
  • intensive care unit
  • cancer therapy