Login / Signup

MaNsdD regulates conidiation negatively by inhibiting the AbaA expression required for normal conidiation in Metarhizium acridum.

Dongxu SongYueqing CaoYuxian Xia
Published in: Environmental microbiology (2022)
Conidiation necessary for filamentous fungal survival and dispersal proceeds in two fashions, namely, normal conidiation through conidiophores differentiated from hyphae and microcycle conidiation through conidial budding. Normal conidiation has been well studied, whereas mechanisms underlying microcycle conidiation are still largely unknown. Here, we report that a gene (MaNsdD) homologous to NsdD in Aspergillus nidulans serves as a suppressor of normal conidiation but a positive regulator of hyphal development in Metarhizium acridum. Disruption of MaNsdD (ΔMaNsdD) resulted in microcycle conidiation and significantly descended in conidial resistance to heat while improved to UV irradiation. Transcriptomic analysis revealed that many genes involved in conidiation, cell division and cell wall formation were differentially expressed in ΔMaNsdD, and likely associated with the conidiation process. We found that a gene (MaAbaA) homologous to the core asexual development regulator AbaA in A. nidulans was negatively controlled by MaNsdD. Disruption of MaAbaA led to the abolition of the conidiation process of M. acridum. These findings unravel a novel regulatory mechanism of microcycle conidiation and add knowledge to the asexual conidiation pathway of filamentous fungi.
Keyphrases
  • cell wall
  • transcription factor
  • dna damage
  • single cell
  • oxidative stress
  • genome wide
  • radiation induced