Login / Signup

Antifungal Application of Rosin Derivatives from Renewable Pine Resin in Crop Protection.

Pan TaoChengyu WuJin HaoYanqing GaoXiaohua HeJian LiShibin ShangZhanqian SongJie Song
Published in: Journal of agricultural and food chemistry (2020)
In the current work, we synthesized two series of dehydroabietyl amide derivatives from natural product rosin and evaluated their antifungal effects on Valsa mali, Phytophthora capsici, Botrytis cinerea, Sclerotinia sclerotiorum, and Fusarium oxysporum. In vitro and in vivo antifungal activities results indicated that rosin-based amide compounds containing thiophene heterocycles had better inhibitory effects on B. cinerea. In particular, compound 5b (5-fluoro-2-thiophene dehydroabietyl amide) exhibited the excellent antifungal properties against B. cinerea with an EC50 of 0.490 mg/L, which was lower compared to the positive control penthiopyrad (0.562 mg/L). Physiological and biochemical studies showed that the primary action mechanism of compound 5b on B. cinerea changes mycelial morphology, increases cell membrane permeability, and inhibits the TCA pathway in respiratory metabolism. Furthermore, QSAR and SAR studies revealed that charge distribution of rosin-based amides derivatives have a key role in the antifungal activity through the hydrogen bonding, conjugation, and electrostatic interaction between the compounds and the receptors of the target. To sum up, this study contributes to the development of rosin-based antifungal agents with a novel structure and preferable biological activity.
Keyphrases
  • candida albicans
  • structure activity relationship
  • molecular dynamics
  • endothelial cells
  • case control
  • molecular dynamics simulations
  • respiratory tract